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FIGURE I
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CHAPTER 14 -- GAUSS'S LAW

14.1)  This problem is tricky.  An electric
field line that flows into, then out of the cap (see
Figure I) produces a negative flux when entering
and an equal positive flux when exiting.  Its net
flux equals ZERO.  That means that the only
electric field lines that will produce a net flux are
those that enter through the body of the cap
while exiting through the cap's hole (they pro-
duced negative flux while passing in but produce
no additional flux as they exit via the hole).  As
the hole has an area Ao, the flux through the
hole, hence through the cap, will equal EAo.

14.2)  The volume charge density for this charge configuration will be:
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Additionally, a differential shell of charge of radius b and differential thickness
db located inside the Gaussian surface will have a differential volume dV equal
to:

dV = (surface area)(thickness)
      = (4πb2)db.

a.)  For a spherical Gaussian surface
inside the sphere (see Figure II to the right),
we can write:
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b.)   For the field outside the sphere:  A Gaussian surface outside the
sphere will have Q's worth of charge within it.  For this situation, Gauss's
Law in truncated form becomes:
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In other words, the sphere will appear like a point charge for r > R.

14.3)  The situation is sketched to the right.

a and b.)   Assume for the moment that the +Q's worth of charge was
NOT placed at the center of the system.  In that case, the +2Q's worth of
charge placed on the inside surface of the conductor would migrate to the
outside surface of the conductor due to electrostatic repulsion.

Assume now that the +2Q's worth of charge was not placed on the in-
side surface of the conductor, but that the +Q's worth of charge was placed
at the center of the system.  In that case, -Q's worth of charge would mi-
grate from the outer surface of the conductor to the inner surface of the
conductor, leaving +Q's worth of charge on the outside surface.  How do
we know this?  Because the electric field inside the conductor must be zero
for static charge situations, and the only way that can happen is if the net
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FIGURE III
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charge internal to a Gaussian surface inside the conducting region is zero.
That will only happen if the charge at the center and the charge induced
onto the inside surface of the conductor are equal and opposite.

The two situations together yield the following:  The +Q's worth of
charge levitating at the center will induce -Q's worth of charge onto the
inner surface of the conductor, leaving +Q's worth of charge on the outer
surface of the conductor.  That will be joined by
the +2Q's worth of charge that was initially
placed on the conductor's inside surface, but
that subsequently migrated to the outer sur-
face due to electrostatic repulsion.

Bottom line:  There will be +Q's worth of
charge at the center, -Q's worth of charge on
the inside surface of the conductor, and +3Q's
worth of charge on the outside surface of the
conductor.

c.)   The charge enclosed inside a spherical
Gaussian surface whose radius is r < R1 is +Q.
As such, we can write:
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d.)  The region is a conductor.  As such, the electric field in the region
is zero.  Proof?  The charge inside a Gaussian surface within the region
will be -Q + Q = 0.

e.)   For r > R2 the charge enclosed within a Gaussian surface will be
+3Q.  As such, we can write:
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FIGURE IV
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f.)   The surface charge density on a sphere of radius R2 having a total
of +3Q's worth of charge on it is:

  
σ = (3Q)

4πR2
2 .

14.4)  The system is shown in Figure IV.

a.)  The units of k must be inverse meters as
the unit for r is meters and the exponent (i.e., kr)
must be unitless.  The units of C must be
coulombs per meter if ρ is to be a volume charge
density.

b.)   To determine the Electric Field versus
Position graph, we must determine the electric
field function for each of the four regions in which
distinct fields exist.  Using Gauss's Law in
conjunction with spherical Gaussian surfaces for
each region, we get:

FIGURE V
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--For r < R1:  The electric field in this region is ZERO as there is no charge
enclosed within it.

--For R1 < r < R2:  Assuming the spherical Gaussian surface in this region
has a radius equal to r, we need to determine the amount of charge
residing inside that surface.

The volume charge density b units from
the sphere's center is:

 
  
ρ = C

b2 ekb .

If we can determine the differential charge
inside a spherical shell of radius b and
thickness db, then we can integrate that
between the inside radius of the shell (i.e.,
R1) and the Gaussian radius r.  Figure V
highlights the setup.
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--For R2 < r < R3:  Inside the conductor, the electric field will equal ZERO.

--For r > R3:  The Gaussian surface encloses all the charge within the
configuration including that on the outer surface of the conductor.  In
truncated form, Gauss's Law for this yields:
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Summarizing what we know, and remembering that we can substitute
in C = 10-12 coulombs per meter, σ = 10-12 coulombs per square meter, R1 =
1 meter, R2 = 2 meters, and R3 = 3 meters, we have:

--For r < R1:  E = 0.
--For R1 < r < R2:
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--For R2 < r < R3:  E = 0.
--For R3 < r:
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The graph of these functions, each evaluated in its own region, is
presented on the next page in Figure VI.
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FIGURE VI

Electric Field versus Position for Spherical Charge Configuration
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c.)   Electric field functions are evidently not continuous functions,
as the graph shows.

FIGURE VII
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14.5)  The system is shown in
Figure VII to the right.

a.)  The outside pipe must
be an insulator as it has a vol-
ume charge density associated
with it (there can be no free
charge inside a conductor as
all such charge will migrate as
far away from like charge as
possible, redistributing itself
on a conductor's outside surface).



446

A Gaussian surface between r1 and r2 will have charge enclosed

within it due to the surface charge density σ1 on the inside pipe's surface.
That means there will be an electric flux through the Gaussian surface
which, in turn, means there will be an electric field in that region.  A
conductor cannot have an electric field within its boundary, hence the
material making up the inside pipe must be an insulator.

b.)   As was the case with the spherical-symmetry-problem of the same
kind (Problem 14.4), we must derive electric field expressions for each
region.  Doing so yields:

--For r < r1:  A cylindrical Gaussian surface within this region will
have no charge enclosed within it, hence the electric field in this region
will be zero.

--For r1 < r < r2:  Inside the innermost pipe, the charge enclosed
within a cylindrical Gaussian surface of length L will be the consequence
of the surface charge density σ1.  As such:
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--For r2 < r < r3:  Outside the inner pipe, the charge enclosed within a
cylindrical Gaussian surface of length L will be the consequence of the
surface charge density on the inside and outside surfaces.  As such:
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--For r3 < r < r4:  Inside the outer pipe, there is a volume charge
density to consider.  Remembering we must include ALL the charge
enclosed within the Gaussian surface (i.e., including the charge on the
inner pipe's surfaces), we can write:
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--For r > r4:  Outside the outer pipe, ALL the charge in the entire
system is enclosed within a Gaussian surface.  As such, we can write:

    

E S

          

          

          

• =

⇒ π =
+ π − π

⇒ =
[ ] π( )[ ] + π − π

π

⇒ =

∫

∫

∫

=

=

d
q

E rL
dV r L r L

E
C a e aL da r L r L

rL

E
C

encl

oS

a r

r

o

ka

a r

r

o

ε

ρ σ σ

ε

σ σ

ε

( )
( ) ( )

( / ) ( ) ( )

( )

(

2
2 2

2 2 2

2

3

4

3

4

1 1 2 2

1 1 2 2

// ) ( ) ( )

( )

( / ) ( ) ( )

( )
.

k e r r

r

E
C k e e r r

r

ka

a r

r

o

kr kr

o

[ ] + −

⇒ =
−[ ] + −

= 3

4

4 3

1 1 2 2

1 1 2 2

σ σ

ε

σ σ
ε

          



448

Summarizing what we know and putting in C = 10-12 coulombs per
square meter, σ1 = 10-12 coulombs per square meter, σ2 = 2x10-12 coulombs
per square meter (this is the charge's magnitude--the negative sign has al-
ready been incorporated into the problem via Gauss's Law),  r1 = 1 meter,
r2 = 2 meters, r3 = 3 meters, and r4 = 4 meters, we get:

--For r < r1:  E = 0.

--For r1 < r < r2:
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--For r3 < r < r4:
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--For r4 < r:
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FIGURE VIII

Electric Field versus Position for Cylindrical Charge Configuration
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Putting it all together in Figure VIII, we get:

14.6)  The easiest possibility is a volume charge density function that is
constant.  Assuming that is the case, Gauss's Law yields:
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A second possibility is to assume that the volume charge density function
varies with the distance from the central axis.  In that case, we can use Gauss's
Law in conjunction with a cylindrical Gaussian surface to determine the electric
field outside the rod, write out the qencl expression in terms of the volume charge

density function ρ, and then determine ρ by comparing our integral expression
with the known electric field expression.  Doing so yields:
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By inspection, ρ = ka4.

Not clear?  Consider:
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--If ρ = k, the integral would equal ka2/2.  After evaluating between a = 0
and a = R, the right-hand side of Gauss's Law would equal kR2/2.

--If ρ = ka, the integral would equal ka3/3.  After evaluating between a = 0
and a = R, the right-hand side of Gauss's Law would equal E = kR3/3.

--If ρ = kan, the integral would equal ka(n+2)/(n+2).  After evaluating
between a = 0 and a = R, the right-hand side of Gauss's Law would equal E =
kR(n+2)/(n+2).

--Noting this, the right-hand side of Gauss's Law will equal the left-hand
side (i.e., kR6/6) if the volume charge density function is ka4.

14.7)
a.)  Assuming the disk's thickness is t, the volume charge density for

the disk is:

ρ = Q/V
   = Q/[πR2t]
   = Q/[π(1 m)2(.02 m)]
   = 15.9Q.

Using a cylindrical Gaussian plug that extends through the disk an
equal distance on either side (see Part I of this chapter if this is not clear),
we get a near-field derivation that yields:
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b.)   A surface charge density function for this configuration must allow
us to determine the amount of charge underneath, so to speak, an area-
section on the disk's surface.
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FIGURE IX
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As the total charge within the disk is Q while the total surface area is
πR2 = π(1 m)2 = 3.14 m2, we can write:

 σ = Q/A
    = Q/3.14
    = .318Q.

c.)   Treating the disk like a sheet of charge and using a cylindrical
Gaussian plug that extends through the sheet of charge an equal distance
on either side, we get:
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This is the same near-field expression we calculated using the volume
charge density function in Part a.  It is interesting to note that this is also
numerically equal to σ/2εo .

d.)  Consider a circular
hoop of radius r with total
charge dq distributed uni-
formly on its surface.  Define a
differential charge dq' at some
arbitrary position on the hoop.
That differential charge will
produce a differential electric
field dE' at x (see Figure IX).

When we integrate to get
the net field dE due to all the
charge dq in the hoop, the y
components will add to zero due
to the symmetry of the configu-
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FIGURE X
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ration.  That means we can forget them and focus solely on the x
components of the field.  Put another way, the net field dE from the hoop
will equal the x component of the vector sum of all the dE' quantities, or:

dE = ∫dE'(cos θ).

Doing that integral yields:
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Again, the differential charge dq in this expression is the total charge on
the hoop.

Having an expression for
the magnitude and direction of
the electric field of an arbi-
trary hoop along its central
axis, we can now deal with our
disk (see Figure X).  Noting
that dq = σdA, where dA =
(2πr)dr and σ = (Q/πR2), we
can write:
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e.)   As we get away from the disk, the field strength will decrease.
That means that the constant σ/2εo value we derived in the chapter for
the near-field situation will become further and further off as one proceeds
out along the x axis.  We want to know at what x that near-field value is
95% of the actual value.  Using the actual field expression derived in Part
d and the near-field information derived in Parts a and/or b we can write:
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Evidently, the Gaussian electric field is good to 5% at .05R meters
from the surface.  For our case in which R = 1 meter, the near-point
Gaussian expression is within 5% of the actual electric field value when at
5 centimeters from the disk's surface.


